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The fu l l  power test ing of the c rossed- f i e ld  closing switch was
performed at the U . S. A r m y  Electronics  Command at Fort  Monmouth ,
New Je r sey ,  in collaboration wit h Mr . John Creedon and his staff .
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I. INTROD U CTION

A. Program Goals and Achieved Levels

The objective of this program was to develop a closing switch

for high-energy pulser applications . A trLode version of the crossed-

field closing switch (CFCS) was chosen for this purpose. Crossed-field

devices had previously been shown to have the potential for  use as high-

average-power closing switches. The key feature which differentiates

the CFCS from other spark gaps is that it has no localized t r i gger

electrode to overheat or cause  e x c e s s i v e  eros io n. Instead, the dis-

charge  is ini t ia ted as a crossed-f ie ld  d ischarge  which uniformly f ills

the cylindrical interelectrode space. As the current increases, the

currcLlt density will eventually exceed a critical level, and a discharge

with some of the features of a vacuum arc  will form. The location of
• the t ’ arc, I l  which depends primarily on the surface condition of the

elect rod e s , was found to change randomly f rom shot to shot . It was

one goal of this p rogram to show that the randomization of arc location

would enable such a device to be run at an average power of 0 .48 MW .

In actua l tests , the device was shown to operate reliably to at least

0. 8 MW and perhaps higher. The other desired electrical character-

istics of the switch are compared with the achieved results in Tabl e I.

In all cases, the test results either equaled or exceeded the goal levels

or were restricted by the capability of the ECOM test facility.

B. Diode versus Triode

According to Referenc e 1 , a magnetic field of about 700 G is

required to initiate a discharge at 40 kV. Similar results were found

by Boucher and Doehier and by Lutz and Hofmann4. More recent
results by Harvey and Lutz

5’ 6 have shown that even more magnetic

field may be required to ensure stable operation as the electrodes are
conditioned. These devices all had the same “diode” configuration in

that the anode and cathode were concentric cylinders .

1 
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Table I. Electrical  Requ i rement s

Paramete r  Goal Levels Achieved Levels

Peak voltage , kV 4 0

Peak c u r r e n t , kA 20 40

Pulse width , 1~sec 10 12

R epe t i t ion  rate , Hz 125 108 rn

Ave rage cu r ren t , A 24 40 *

Avera ge power , kW 480 800~
’

*Run time 60 sec at 0. 5 > 12 30 sec runs
duty cycle , off at or over goal
for 600 sec . l e v e l s . Heat
Repeat cycle exchange time
6 t imes —400 sec .

• J i t t e r , ~sec — << 1

Life t ime — >6 x 10 pulses ,

> 2 x 1 0 4 C

Equivalent resistance — 0. 007 £~ for
800 MW peak
power

Trigger pulser — < 300
power, W

“These maximum levels were determined by external circui t
l imitations.
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7
An alternative (triode) approach has been proposed by Lutz

which avoids the need f o r  a h igh ma gnetic f i e ld . A thi rd  c oncentric

elect rode ( gr id ) is added ~rhich divides the 
interelectrode space into

two pa r t s , as shown in F i g u re  1 . By holding the gride at the cathode

pote n t ia l , wi th the anode at fu l l  voltage , ne i ther  gap can be activated

by a magnetic  f i e l d  of 100 G . However , ra is ing the gr id  voltage to

about 500 to 1000 V with r es pect to the cat hode in i t i a tes  a d i sc harg e

in the gr id-ca thode  gap. By pe r fora t ing  the gr id , 8 the plasma from

the initial d i s char ge ( a s  small as 3 A ) was f ound  to penetra te  the gr id

into t he anode space and cause a fu l l -sca le  discharge to take place .

The t r iode  confi gura t ion  was chosen for  the prototyp e CFCS because

it has two advantages over the diode configuration: the power require-

ments f o r the ma gn etic f ie ld pulser are reduced by nearly two orders

of  ma gn itude , and the s tar t  of the discharge is t r iggered in a more

conventional manner with less timing delay and j i t te r . Prior  to thi s

program , the laboratory model tr iode device shown in F igure  2 was

successfull y operated as a CFCS in a single-shot  mode for over

3600 pulses at 50 kV and 7 kA peak cur ren t .

C. Prel iminary Experiments

Preliminary high-average-power experiments were performed ‘

in collaboration with Mr. John Creedon at the U. S. Army Electronics

Command at Ft. Monmouth, New Jersey, using the laboratory model

triode device shown above. The results confirmed that the arc tracks

are randomly distributed over the active cathode area when the device

is operated repetitively in the normal grounded-cathode mode . The

thermal run-t ime limit observed was consistent with theoretical

estimates of the time required to overheat the electrodes in either the

grounded-cathode or grounded-grid mode . This implies that stabilizing

electrode temperature (and gas density) is essential for proper high-

average-power CFCS operation. An example of the pulse waveform is

shown in Figure 3. The switch was snapped-on for a 50 pulse burst

at 60 Hz with a peak current of 5 kA at ~4 kV .

3
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CATHODE ANODE GRID
ASSEMBLY ASSEMBLY

F igu re  2. Uncooledtr iode vers ion of CFCS.
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F igure 3. F i f t y  (5 0) pulse  b u r s t  (at  60 Hz), 5 kA , 24 kV .
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D. Prototype Design

The design for  the full-power prototype CFCS which corrected
the above e f fec t s  is described in Section II. In that design , all three
electrodes fo rce  cooled; the electrodes are monitored to ascertain the
heat loading of the components . The auxil iaries consist of a magnet
and g r id - t r i gge r  pulsing system, a vacuum control system, and a
thermal control system. An overview of the switch, the auxiliaries,
and the ECOM test fac i l i ty  is shown in Figure  4

.7



- — -I-- .‘ ~~ -

-

‘-I-- .

a. 
£ •

‘
p 

5

•• I
I~ ~~~ .

.f • -

Fi gure  4. CFCS system and ECOM test facil ity .
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II. THE FULL-POWER PROTOTYP E CFCS

A. Design

The CFCS design is shown in Figure 5. All components

exposed to the discharge are OFHC copper, A1203, or thin-walled
metal backed up by water . The cathode is made of thin-walled stainless
steel to have a short magnetic field penetration time and also to main-
tain a low temperature differential  between the plasma and the coolant .
It fo rms  the vacuum wall and is supported mechanically by vertical
ribs which also serve as deflection baffles for  the coolant flow . A
fiberglass  shell is wound over the supporting ribs to enclose the
coolant passages. Finally, the magnetic-field coil is wound over the
f iberglass  shell .

A slotted grid s t ruc tu re  is supported at four locations for
mechanical stability. Two of the supports also serve as coolant pipes
and electrical leads . The hollow Cu anode is cooled by flowing oil
through the high-voltage bushing.

• The entire anode assembly may be removed for inspection
and repair by unbolting the top flange. Likewise, the grid s t ructure  is
removed by unbolting the lower flange .

• The device is designed to withstand a forward voltage in
excess of 70 kV under vacuum ; it has a natural Paschen breakdown

• p ressure  limit of 85 mTorr of He at 40 kV . The normal operating

• pressure is about 60 mTorr of He.

B. Auxiliaries

The trigger pulsing system is diagrammed in Figure 6. It

consists of three components. At the top is the magnetic field pulser,
which is resonantly pulse charged and has a resonant flyback inductor
to reduce the net charging current, The grid trigger time-delay

£ circuitry (in the center of the diagram) senses a time point equivalent

to the peak magnetic field in the coil (about 150 G) and fires the SCR

of the grid pulser at the bottom. The grid pulser , in turn, supplies
a 600 V, 80 A pulse to drive the grid circuit transformer of the CFCS

.9



I 

—

~~~~ 
-

~~ ~~5325-8

~~~~~~~~~~~~~~~~~~~~~~~~~~~ I 
~~~~~~ANODE LEAD

~
,

OIL

,
_i
/y TOP

f

~L~
-
: 
7~~~~3~~

7” 

~

~~~

~~~~~~~~

I i~ 
~~~~~~COIL

-11± 
~~~~~~~~

1 
I ~~NIZER

Lii- 
~~~~~~~~~~~~~~~~~~~~~~ PUMP-OUT

- PORT

—

~ GA ID
LEAD

a Side view

Figure 5. High average power prototype CFCS design.

10



~~~~~~
- -.-•-

~~
-• - —.••--—

~~~~~
- • •

• - --- • --- •--_

5325-b

0 — 400 V dc

117 V 
~~~~~~~~~~~~~~~~~~~ 

EfE~EIII~IPI ~ ~~~~~~~~~ 
li_I

TO FIELD COIL

J (~
I

~~~~ITR IGGER IN

I 

_ _ _ _ _ _ _ _ _ _  

~~~~~~RIGGER

• 

~

•

• 

~~~~~ ±GR
~~

PULSE

L~FJ FAN

Figure 6. Tr igger  pulsing system.
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The system may be operated from 0 to 125 Hz. The total t r i g g e r  energy
required was found to be <2 J pulse.

A feedback-cont ro l led  vacuum leak valve was ini t ia l l y supp lied

with the CFCS to maintain a constant  He p re s su re  dur ing  the test ing.
The leak valve failed to close properl y earl y in the tes t ing  phase .
Sub sequentl y, a manually operated leak valve was used to ref i l l  the
sw itc h in between test  r uns .

Th e temperature control sy stem wa s asse mbled on a ca r t .
It is composed of th ree electrically isolated sets , each containing

stora g e containers , pumps , throt t le  valves , flow meters, and hoses .
A digital  thermometer monitors the temperature change of the coolant

(H 20 or t r ans fo rmer  oil) as it enters  and leaves the electrodes. The
system enables an accura te  measurement of both the heat loading and

instantaneous tempera ture  of the electrode.

C. Test Ci rcu i t

Although the CFCS is capable of operating in either a grounded-

grid or a grounded-cathode mode, only the grounded-cathode mode has

been tested at full power. The test circuit is shown in Figure 7. The

pulse-forming network (PFN) is resonantly charged through the 1.5 H
choke. The grid pulser charges the 0. 01 ~F capacitor to about 2 kV

in 1.7 psec . This is sufficient to discharge the capacitor into the grid-

cathode gap, which then transfers plasma to the anode-cathode gap.

This results in an anode voltage fall time ~0. 1 1j.sec. The PFN then
drives the main discharge current pulse through the switch into a

matched resistive load. Two 1 ~2 PFNs were used either separately

or in parallel as 0. 5 cl .
The pulse rise time was limited to about 1.4 ~isec by the lead

inductance between the switch and the rest of the circuit. The pulse

width (FWHH) was about 12 ~isec. The resonant recharge time of the

PFN was 8 msec and was independent of the pulse repetition rate.

12
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III . EXPERIMENTAL RESULTS

A. Electrical

The performance of the device has been characterized by a
ma rked and s t eady improvement in its operating stability with increasing

peak power . The test levels have thus far  been limited to 30 sec bursts  at

• peak c u r r e n t s of 40 kA , peak voltages of 40 kV , and 12 ~isec pulse

• widt hs at a repeti t ion rate of 80 Hz . The charac te r i s t i c  40 kA cur ren t

pulse waveform is shown in Fi gure  8. Approximately 16 pulses are

supe r imposed on the oscillogram. These were taken midway during a

run . The upper t race  was obtained f rom a res is t ive  divider , which

served to dete rmine only the initial PFN voltage . Th e actual voltage

waveform was equivalent to tha t shown in F igure  3.

Operation at this level yields an average power of 800 kW to
- the 0 . 5 ~2 load at 40 A average cu r r en t  (12 00  A rms).  Although a

fundamental upper limit in the switched power must exist , no indication

of it has yet been obse r ved . During the entire test  period , only one

‘kick-out”  was de te cted . This was at an intermediate power level

and may have been related to a fa i lure  in the auxil iary equipment .
The present  average power limit was set by the power supply,

which was run well ove r its normal rating of 30 A average current .
The resonant charging network voltage-recovery rate, however, was

equivalent to 125 Hz operation. Repetition rates of up to 108 Hz were

demonstrated using a 1 £2 load at 24 A average current  (20 kA , 40 kV ,

11 .4 j.sec pulse width) at an average power of 490 kW. The run

time and the repetition rate were limited by overheating of the load ,

and the voltage was limited by the PFN rating.

B. Thermal

The thermal loadings of the three electrodes were monitored

calorimet rically using the pumped coolant temperature rise. The net
effective cathode voltage drop was found, by this means , to vary with
the peak switch power , falling smoothly from 400 ± 25 V at 29 MW to

115 ± 5 V at 800 MW. No repetition rate dependence was observed.

14
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40 kV

• 

• 
_
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4O kA

2 psec_ *! 1~—
Figure 8.
CFCS operation at: 800 kV average power to
load , 800 MW peak power , 80 Hz , and 40 A
average cur ren t  (1240 A rms).  Upper trace:
res is t ive  divider (dc only),  lower trace:
switched current  pulse wave form; 0. 2 sec
exposure during 30 sec run .
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Similarl y, it was found that the grid and anode voltages were  78 ± 6 V

and 53 ± 10 V . r espect ively, and were  independent of the peak power

or the repetit ion rate . This information is consistent with earlier , but

less accu rate , voltage drop measurements  made on a diode version of

the CFCS operated in a sing le-shot mode . 
2 The estimated temperature

r i se  of ei ther the anode or the grid following a 30 sec run at 0 . 8 MW is

about 90 °C . The temperature r ise  of the cathode is lower (—25 °C) due

to the hig h heat capacity of the cooling rater  in contact with the rear

sur face  of the cathode . The e-folding time required to t ransfer  the

electrod e heat to the thermal baths was approximately 6 to 8 mm .

C. P res su re

Gas cleanup was observed to depend strongly on peak power ,

fall ing as the voltage drop falls . Operation at lower peak power and
• hig h repetition rate tends to be unstable without any active pressure

cont rol. At 500 MW and above , the pressure was found to stabilize

within the normal operating rang e after  the f i r s t  few seconds of

operation.

D. Inverse Clipping

Inverse clipping was observed on a few percent of the pulses.

No obvious causal relationships with current, pulse repetition frequency,

conditioning time , or pressure  were seen; no forward voltage recovery

problem was observed (either with or without inverse clipp ing).

E. Life

Following the conduc tion of mor e than 2 x 104C of charge in
about 6 x IO ~ pulses , the anode of the tube was disassembled from the

remainder of the tube and the interior of the device was inspected.

No evidence of accelerated wear (or other possible life-limiting effects)

was seen. The site of the inverse clipping conduction was found to be

localized at the anode’ s upper shoulder. This created no obvious

problems to the tube. Otherwise, the arc-track activity was spread

16
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out uniforml y over the areas which were  originall y designed to handle the

cur ren t . The tube was then reassembled and has since been operated

for more than three 30 sec run s.
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IV . SUMMARY

The CFCS has been shown to operate reliably at average powers

up to 0. 8  M \\’, peak c u r r e n t s up to 40 kA , voltage up to 40 kV , and

pulse repet i t ion f r e q u e n c i e s  up to at least 108 Hz . The upper l imits

of the peak c u r r e n t , peak voltage , and repeti t ion rate have not yet

been established . Since the maximum switchable power var ies  as the

pro duct  of these three  parameters , it is reasonable to assume that

th is power limit is in excess of the 0. 8 MW reported herein . Likewise ,

the l i fe  l imit  of the device  has not been determined but it is likely to be

considerab ly longer than the present  test  limit of 20 , 000 C .
Th ere ar e two practical lim itations to optimum per formance in

an arbitrar y system. The f i r s t  is the thermal heat loading of the

electrodes alr eady desc r ibed , This is tractable by conventional tech-
• nique s and will impact the size , weight and duty cycle of the device .

The second is the c ontrol of the He gas pressure .  The stability of the

gas pressure was found to be a function of peak current. At currents

below about 10 kA , the gas cleanup rate is rapid , presumably due to

conduction taking place in a glow-discharge mode . At high cur ren t s ,

the cleanup ra te  is lower . Relatively little cleanup was observed at

the hig hest c u r r e n t , where the effect ive conduction voltage drop was

low .
Althoug h the conduction mechanism has many features of a

vacuum arc , it does not exhibit a sharp glow-to-arc  transit ion at a

fixed current density. Also, the voltage drop (between 246 and 530 V)

is considerabl y hig her than that of a classical vacuum ar c ’° and only

10 to 20% of the excess may be accounted for  by res is t ive  losses .
Since a similar result  has also been observed with diode CFCS, some

care must be taken in interpreting the discharge to be an arc .

18
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